Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8293300 | Biochemical and Biophysical Research Communications | 2018 | 7 Pages |
Abstract
The emergence of chemoresistance greatly increases the recurrence risk for non-muscle invasive bladder cancer (NMIBC) patients, which is still a big concern of clinicians. Understanding the mechanisms of drug resistance is of great significance for preventing and reversing it. We showed here that CXC motif chemokine ligand 5 (CXCL5) was overexpressed in mitomycin C-resistant bladder cancer cell line M-RT4. Meanwhile, parental RT4 cell treated with recombinant human CXCL5 (rhCXCL5) reduced its sensitivity to mitomycin C. Conversely, knockdown CXCL5 sensitized M-RT4 cell. We further investigated the molecular mechanisms finding that epithelial mesenchymal transition (EMT) and NF-κB pathway were activated in M-RT4 cell, which could be attenuated by knockdown CXCL5. All these data indicated that CXCL5 may promote mitomycin resistance by activating EMT and NF-κB pathway. Thus, our study identifies CXCL5 as a novel chemoresistance-related marker in NMIBC, thereby providing new strategies to overcome chemoresistance for NMIBC patients.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Chanjuan Wang, Aiwei Li, Shuo Yang, Rui Qiao, Xi Zhu, Jie Zhang,