Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8293496 | Biochemical and Biophysical Research Communications | 2018 | 33 Pages |
Abstract
Aplastic anemia (AA) is generally considered as an immune-mediated bone marrow failure syndrome. Several studies show that bone marrow mesenchymal stem cells (BM-MSCs), as key cellular components of the bone marrow microenvironment, are also involved in the pathogenic mechanism of AA. Cyclosporin A (CsA) is a classic immunosuppressive drug for AA, and it specifically inhibits mammalian T cells by preventing activation of transcription factors involved in cytokine gene expression. However, little is known about the effect of CsA on the BM-MSCs. In this study, murine BM-MSCs were stimulated in the presence of CsA. Further, we found that CsA could inhibit murine BM-MSC proliferation and promote BM-MSC apoptosis, what's more CsA could inhibit adipogenic differentiation. Our study also showed that CsA could inhibit interleukin-6 expression in BM-MSCs, while promoting programmed death-ligand 2 expression. In conclusion, our results proposed that CsA may exert an effect on regulating the bone marrow environment by influencing BM-MSCs, which have a beneficial effect on treating AA.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Ying Qu, Qiwang Lin, Yan Yuan, Zhengxu Sun, Pengfei Li, Fen Wang, Hua Jiang, Tong Chen,