Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8293821 | Biochemical and Biophysical Research Communications | 2018 | 8 Pages |
Abstract
Skin mesenchymal stem cells (S-MSCs) revealed an important immunomodulatory activity to markedly suppress the formation of the atherosclerosis (AS) plaque by modulating macrophages, and also inhibit the development of experimental autoimmune encephalomyelitis (EAE) by regulating T helper 17 (Th17) cell differentiation. Macrophages and Th17 cells play important roles in hypertension. However, it remains unclear whether S-MSCs are capable of improving angiotensin (AngII)-induced hypertension by acting on inflammatory cells. Therefore, we studied a direct effect of S-MSC treatment on an AngII-induced hypertensive mouse model. Twenty-seven C57BL/6 (WT) mice were divided into three groups: Control group (WT-NC), AngII-infused group (WT-AngII), and S-MSC treatment group (WT-AngII + S-MSCs). In contrast to WT-AngII group, systolic blood pressure (SBP) and vascular damage were strikingly attenuated after tail-vein injection of S-MSCs. Numbers of Th17 cells in mouse peripheral blood of S-MSC treated group were significantly decreased, and IL-17 mRNA and protein levels were also reduced in the aorta and serum compared with WT-AngII group. Furthermore, macrophages in S-MSC treated group were switched to a regulatory profile characterized by a low ability to produce pro-inflammatory cytokine TNF-α and a high ability to produce anti-inflammatory cytokines Arg1 and IL-10. Mechanistically, we found that S-MSCs inhibited Th17 cell differentiation and induced M2 polarization. Moreover, we found proliferation and migration of S-MSCs were elevated, and expression of CXCR4, the receptor for Stromal derivated factor â1(SDF-1), was markedly increased in lipopolysaccharide (LPS)- stimulated S-MSCs. Given that SDF-1 expression was increased in the serum and aorta in AngII- induced hypertensive mice, the immunomodulatory effects exerted by S-MSCs involved the CXCR4/SDF-1 signaling. Collectively, our data demonstrated that S-MSCs attenuated AngII-induced hypertension by inhibiting Th17 cell differentiation and by modulating macrophage M2 polarization, suggesting that S-MSCs potentially have a role in stem cell based therapy for hypertension.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Xiangxiao Li, Weihong Sun, Wenda Xi, Weili Shen, Tong Wei, Wendong Chen, Pingjin Gao, Qun Li,