Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8294552 | Biochemical and Biophysical Research Communications | 2018 | 10 Pages |
Abstract
Various gene delivery systems have been widely studied for the acute spinal cord injury (SCI) treatment. In the present study, a novel type of brain-derived neurotrophic factor (BDNF)-loaded cationic nanobubbles (CNBs) conjugated with MAP-2 antibody (mAbMAP-2/BDNF/CNBs) was prepared to provide low-intensity focused ultrasound (LIFU)-targeted gene therapy. In vitro experiments, the ultrasound-targeted tranfection to BDNF overexpressioin in neurons and efficiently inhibition neuronal apoptosis have been demonstrated, and the elaborately designed mAbMAP-2/BDNF/CNBs can specifically target to the neurons. Furthermore, in a acute SCI rat model, LIFU-mediated mAbMAP-2/BDNF/CNBs transfection significantly increased BDNF expression, attenuated histological injury, decreased neurons loss, inhibited neuronal apoptosis in injured spinal cords, and increased BBB scores in SCI rats. LIFU-mediated mAbMAP-2/BDNF/CNBs destruction significantly increase transfection efficiency of BDNF gene both in vitro and in vivo, and has a significant neuroprotective effect on the injured spinal cord. Therefore, the combination of LIFU irradiation and gene therapy through mAbMAP-2/BDNF/CNBs can be considered as a novel non-invasive and targeted treatment for gene therapy of SCI.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Zhaojun Song, Yongjie Ye, Zhi Zhang, Jieliang Shen, Zhenming Hu, Zhigang Wang, Jiazhuang Zheng,