Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8295052 | Biochemical and Biophysical Research Communications | 2018 | 19 Pages |
Abstract
The potential effect of the long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) against hydrogen peroxide (H2O2)-induced oxidative injury in endothelial cells was tested. We show that forced-expression of MALAT1 using a lentiviral vector (“LV-MALAT1”) significantly attenuated H2O2-induced death and apoptosis of human umbilical vein endothelial cells (HUVECs). Conversely, knocking down of MALAT1 by targeted siRNA exacerbated H2O2-induced HUVEC injury. For the mechanism study, we show that LV-MALAT1 induced Keap1 downregulation, leading to nuclear-factor-E2-related factor 2 (Nrf2) stabilization and activation. Critically, Nrf2 shRNA almost completely abolished LV-MALAT1-mediated HUVEC protection against H2O2. Significantly, H2O2-induced oxidative stress, lipid peroxidation and DNA damages in HUVECs were attenuated by LV-MALAT1, but were intensified with MALAT1 siRNA. In summary, we identified a novel signaling axis involving MALAT1, Keap1 and Nrf2, which in turn protects HUVECs from oxidative injury.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Rong Zeng, Rui Zhang, Xitao Song, Leng Ni, Zhichao Lai, Changwei Liu, Wei Ye,