Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8295054 | Biochemical and Biophysical Research Communications | 2018 | 6 Pages |
Abstract
To investigate the role of nitric oxide (NO)/reactive oxygen species (ROS) redox signaling in Parkinson's disease-like neurotoxicity, we used 1-methyl-4-phenylpyridinium (MPP+) treatment (a model of Parkinson's disease). We show that MPP+-induced neurotoxicity was dependent on ROS from neuronal NO synthase (nNOS) in nNOS-expressing PC12â¯cells (NPC12â¯cells) and rat cerebellar granule neurons (CGNs). Following MPP+ treatment, we found production of 8-nitroguanosine 3â²,5â²-cyclic monophosphate (8-nitro-cGMP), a second messenger in the NO/ROS redox signaling pathway, in NPC12â¯cells and rat CGNs, that subsequently induced S-guanylation and activation of H-Ras. Additionally, following MPP+ treatment, extracellular signal-related kinase (ERK) phosphorylation was enhanced. Treatment with a mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor attenuated MPP+-induced ERK phosphorylation and neurotoxicity. In conclusion, we demonstrate for the first time that NO/ROS redox signaling via 8-nitro-cGMP is involved in MPP+-induced neurotoxicity and that 8-nitro-cGMP activates H-Ras/ERK signaling. Our results indicate a novel mechanism underlying MPP+-induced neurotoxicity, and therefore contribute novel insights to the mechanisms underlying Parkinson's disease.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Kumiko Masuda, Hiroyasu Tsutsuki, Shingo Kasamatsu, Tomoaki Ida, Tsuyoshi Takata, Kikuya Sugiura, Motohiro Nishida, Yasuo Watanabe, Tomohiro Sawa, Takaaki Akaike, Hideshi Ihara,