Article ID Journal Published Year Pages File Type
8295077 Biochemical and Biophysical Research Communications 2018 19 Pages PDF
Abstract
DNA/RNA helicases, which catalyze the unwinding of duplex nucleic acids using the energy of ATP hydrolysis, contribute to various biological functions involving DNA or RNA. Euryarchaeota-specific helicase Tk-EshA (superfamily 2) from the hyperthermophilic archaeon Thermococcus kodakarensis has been used to decrease generation of mis-amplified products (noise DNAs) during PCR. In this study, we focused on another type (superfamily 1B) of helicase, Tk-Upf1 (TK0178) from T. kodakarensis, and compared its effectiveness in PCR and digital PCR with that of Tk-EshA. For this purpose, we obtained Tk-Upf1 as a recombinant protein and assessed its enzymatic characteristics. Among various double-stranded DNA (dsDNA) substrates (forked, 5′ overhung, 3′ overhung, and blunt-ended duplex), Tk-Upf1 had the highest unwinding activity toward 5′ overhung DNAs. Noise DNAs were also eliminated in the presence of Tk-Upf1 at concentrations 10-fold lower than those required to yield a comparable reduction with Tk-EshA. When a 5′ or 3′ overhung mis-annealed primer was included as a competitive primer along with specific primers, noise DNAs derived from the mis-annealed primer were eliminated in the presence of Tk-Upf1. In digital PCR, addition of Tk-EshA or Tk-Upf1 increased fluorescent intensities and improved separation between common and risk allele clusters, indicating that both helicases functioned as signal enhancers. In comparison with Tk-EshA, a smaller amount of Tk-Upf1 was required to improve the performance of digital PCR.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , ,