Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8296294 | Biochemical and Biophysical Research Communications | 2017 | 4 Pages |
Abstract
The experimental aim of this study was to determine the effects of high glucose-induced endothelial microparticles (EMPs) on endothelial cell susceptibility to apoptosis. Human umbilical vein endothelial cells (HUVECs) were cultured (3rd passage) and plated in 6-well plates at a density of 5.0 Ã 105 cells/condition. Cells were incubated with media containing 25 mM d-glucose (concentration representing a diabetic glycemic state) or 5 mM d-glucose (normoglycemic condition) for 48 h to generate EMPs. EMP identification (CD144+ expression) and concentration was determined by flow cytometry. HUVECs (3 Ã 106 cells/condition) were treated with EMPs generated from either the normal or high glucose conditions for 24 h. Intracellular concentration of active caspase-3 was determined by enzyme immunoassay. Cellular expression of miR-Let7a, an anti-apoptotic microRNA, was determined by RT-PCR using the ÎÎCT normalized to RNU6. High glucose-derived EMPs significantly increased both basal (1.5 ± 0.1 vs 1.0 ± 0.1 ng/mL) and staurosporine-stimulated (2.2 ± 0.2 vs 1.4 ± 0.1 ng/mL) active caspase-3 compared with normal glucose EMPs. Additionally, the expression of miR-Let-7a was markedly reduced (â¼140%) by high glucose EMPs (0.43 ± 0.17 fold vs control). These results demonstrate that hyperglycemic-induced EMPs increase endothelial cell active caspase-3. This apoptotic effect may be mediated, at least in part, by a reduction in miR-Let-7a expression.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Tyler D. Bammert, Jamie G. Hijmans, Whitney R. Reiakvam, Ma'ayan V. Levy, Lillian M. Brewster, Zoe A. Goldthwaite, Jared J. Greiner, Kelly A. Stockelman, Christopher A. DeSouza,