| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 8296295 | Biochemical and Biophysical Research Communications | 2017 | 7 Pages |
Abstract
Neurexins (NRXs) and neuroligins (NLs) play important roles in synapse specification. The alternatively spliced segment 4 (AS4) of NRX genes (Nrxn) is a critical element in selective trans-synaptic interactions. However, the role of splicing of NRXs and NLs in synapse specification is not fully understood. To investigate the exact role of splice-dependent NRXâNL interaction in the specification of glutamatergic and gamma-aminobutyric acid (GABA)-ergic synapses in the cerebellum, we evaluated the synaptogenic receptor activity of NL1/2/3 isoforms in a neuron-fibroblast co-culture system, in which the Nrxn AS4 segments are manipulated using SLM2, a selective and dominant regulator of AS4 splicing. We show that ectopic SLM2 expression (SLM2 E/E) causes marked skipping of exon 20 of AS4 in cerebellar neuron culture. Whereas NLs can induce VAMP2+ presynaptic contacts from mainly glutamatergic neurons in both uninfected (control) and SLM2 E/E co-cultures, they induce VGAT+ GABAergic contacts in the control culture, but not properly in the SLM2 E/E culture. Furthermore, Nrxn3 is responsible for the NL-induced assembly of GABAergic synapses in co-culture. Importantly, lentivirus-based expression of Nrxn3 containing exon 20 restores the reduced NL-induced GABAergic contacts in the SLM2 E/E co-culture. Therefore, our findings may provide further insights into NRXâNL mediated synapse specification.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Yuji Sato, Satoko Suzuki, Yoko Iijima, Takatoshi Iijima,
