Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8300770 | Biochimica et Biophysica Acta (BBA) - General Subjects | 2018 | 14 Pages |
Abstract
Spectropolarimetry of intact plant leaves allows to probe the molecular architecture of vegetation photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological information. In addition to the molecular signals due to the photosynthetic machinery, the cell structure and its arrangement within a leaf can create and modify polarization signals. Using Mueller matrix polarimetry with rotating retarder modulation, we have visualized spatial variations in polarization in transmission around the chlorophyll a absorbance band from 650â¯nm to 710â¯nm. We show linear and circular polarization measurements of maple leaves and cultivated maize leaves and discuss the corresponding Mueller matrices and the Mueller matrix decompositions, which show distinct features in diattenuation, polarizance, retardance and depolarization. Importantly, while normal leaf tissue shows a typical split signal with both a negative and a positive peak in the induced fractional circular polarization and circular dichroism, the signals close to the veins only display a negative band. The results are similar to the negative band as reported earlier for single macrodomains. We discuss the possible role of the chloroplast orientation around the veins as a cause of this phenomenon. Systematic artefacts are ruled out as three independent measurements by different instruments gave similar results. These results provide better insight into circular polarization measurements on whole leaves and options for vegetation remote sensing using circular polarization.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
C.H. Lucas Patty, David A. Luo, Frans Snik, Freek Ariese, Wybren Jan Buma, Inge Loes ten Kate, Rob J.M. van Spanning, William B. Sparks, Thomas A. Germer, GyÅzÅ Garab, Michael W. Kudenov,