Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8301472 | Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids | 2018 | 25 Pages |
Abstract
Fatty liver features triglyceride accumulation in hepatocytes and often occurs with obesity and lipodystrophy in humans. Here, we investigated the mechanism of maladaptive hepatosteatosis with adipose-tissue dysfunction. Perilipin 1 (Plin1) did not exist in hepatocytes but was expressed exclusively in adipocytes as a dual modulator for regulating two principal adipose-tissue functions, triglyceride storage and breakdown. Plin1Â â/â mice showed decreased fat storage but increased lipolysis and efflux of fatty acids from adipose tissue, and hepatosteatosis spontaneously developed without altered circulating inflammatory adipocytokine levels. Plin1Â â/â adipose dysfunction impaired insulin sensitivity and hepatic glucose metabolism, which might inhibit gluconeogenesis to produce more intermediates for hepatic lipid synthesis. Indeed, the livers of Plin1Â â/â mice exhibited upregulated mRNA and protein expression of key enzymes and transcriptional factors for the uptake and transport of fatty acids and for de novo synthesis of triglycerides, but the expression of key enzymes and transcriptional factors for fatty-acid oxidation was downregulated. Biochemical assays in Plin1Â â/â mice confirmed increased fatty acid synthase activity but decreased activity of mitochondrial carnitine palmitoyltransferase 1 and [3H]-palmitate oxidation in the liver. We concluded that dysregulation of two principal functions, adipose storage and hydrolysis, had deleterious consequences on the hepatic lipid metabolism and thereby caused maladaptive hepatosteatosis. This mouse model might mimic and explain the pathogenesis of hepatosteatosis occurring in two typical disorders of adipose tissue dysfunction, obesity and lipodystrophy, particularly in lipodystrophic patients with Plin1 mutation.
Keywords
DGATACSL1VLCADLCADMCADFATPSCD1ACCAFABPChREBPCPT1FASPPARLFABPFFASREBP1cVery long-chain acyl-CoA dehydrogenaseAdipose tissue dysfunctionStearoyl-CoA desaturase 1acetyl-CoA carboxylasefatty acid synthaseFree fatty acidsDiacylglycerol acyltransferaseMedium-chain acyl-CoA dehydrogenaseLong-chain acyl-CoA dehydrogenaseLipolysisLipid metabolismHepatosteatosiscarbohydrate response element binding proteinFatty acid transport proteinAdipocyte fatty acid-binding proteinLiver fatty acid-binding proteinperilipinCarnitine palmitoyltransferase 1PLINperoxisome proliferator-activated receptor
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Suning Wei, Shangxin Liu, Xueying Su, Weiyi Wang, Fengjuan Li, Jingna Deng, Ying Lyu, Bin Geng, Guoheng Xu,