Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8302051 | Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids | 2015 | 7 Pages |
Abstract
Feedback regulation of cholesterol biosynthesis provides a mechanism to adapt to varying cholesterol input while maintaining rather constant serum and tissue cholesterol levels. The molecular mechanisms by which this occurs have been the subject of extensive investigation. This review focuses on the physiological mechanisms by which this regulation occurs. In animals that are sensitive to dietary cholesterol such as Golden Syrian hamsters, feedback regulation occurs mainly at the level of transcription of hepatic HMG-CoA reductase (3-hydroxy-3-methylglutaryl coenzyme A reductase). In animals like the Sprague Dawley rat that are resistant to the serum cholesterol raising action of dietary cholesterol, regulation occurs mainly at the level of translation efficiency of hepatic HMG-CoA reductase. Oxylanosterols were shown to effectively decrease translation of HMG-CoA reductase mRNA. Dietary cholesterol acts to significantly lower transcription of squalene epoxidase and lanosterol 14α demethylase favoring accumulation of the putative regulatory oxylanosterol-3β-hydroxylanosterol-8-en-32-al. Thus, decreased transcription of enzymes occurring late in the cholesterol biosynthetic pathway appears to result in decreased translation of hepatic HMG-CoA reductase mRNA. These findings indicate that pronounced physiological feedback regulation of cholesterol biosynthesis in cholesterol resistant animals occurs at the level of translational efficiency without substantial reduction in hepatic HMG-CoA reductase transcription.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Gene C. Ness,