Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8302216 | Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids | 2014 | 12 Pages |
Abstract
Pseudomonas aeruginosa displays the ability to perform bioconversion of oleic acid into a class of hydroxylated fatty acids known as oxylipins. A diol synthase activity is responsible for such a conversion, which proceeds through the dioxygenation of oleic acid to release hydroperoxide 10-H(P)OME ((10S)-hydroxy-(8E)-octadecenoic acid), followed by conversion of the hydroperoxide intermediate into 7,10-DiHOME ((7S,10S)-dihydroxy-(8E)-octadecenoic acid), both of which accumulate in the culture supernatant. Several mutants of P. aeruginosa PAO1 were analyzed for the production of 10-H(P)OME and 7,10-DiHOME and two of them (ORFs PA2077 and PA2078), unable to release hydroxylated fatty acids, were detected and selected for further analysis. Involvement of ORFs PA2077 and PA2078 in oleate-diol synthase activity was confirmed, and their respective role in the conversion of oleic acid was analyzed by mutation complementation. Activity restoration revealed that gene PA2077 codes for the 10S-dioxygenase activity (10S-DOX) responsible for the first step of the reaction, whereas PA2078 encodes for the (7S,10S)-hydroperoxide diol synthase enzyme (7,10-DS) which allows the conversion of 10-H(P)OME into 7,10-DiHOME. Heterologous expression of both enzymes separately showed that no hetero-complex formation is required for enzymatic activity. Bioinformatics and RT-PCR analysis revealed that both genes constitute a new fine regulated oleate-diol synthase operon, originated by a gene duplication event followed by neofunctionalization for environmental adaptation, being unprecedented in prokaryotes.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Mónica Estupiñán, Pilar Diaz, Angels Manresa,