Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8302444 | Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids | 2013 | 12 Pages |
Abstract
Anandamide and other bioactive N-acylethanolamines (NAEs) are a class of lipid mediators and are produced from glycerophospholipids via N-acylphosphatidylethanolamines (NAPEs). Although the generation of NAPE by N-acylation of phosphatidylethanolamine is thought to be the rate-limiting step of NAE biosynthesis, the enzyme responsible, N-acyltransferase, remains poorly characterized. Recently, we found that five members of the HRAS-like suppressor (HRASLS) family, which were originally discovered as tumor suppressors, possess phospholipid-metabolizing activities including NAPE-forming N-acyltransferase activity, and proposed to call HRASLS1-5 phospholipase A/acyltransferase (PLA/AT)-1-5, respectively. Among the five members, PLA/AT-1 attracts attention because of its relatively high N-acyltransferase activity and predominant expression in testis, skeletal muscle, brain and heart of human, mouse and rat. Here, we examined the formation of NAPE by PLA/AT-1 in living cells. As analyzed by metabolic labeling with [14C]ethanolamine or [14C]palmitic acid, the transient expression of human, mouse and rat PLA/AT-1s in COS-7 cells as well as the stable expression of human PLA/AT-1 in HEK293 cells significantly increased the generation of NAPE and NAE. Liquid chromatography-tandem mass spectrometry also exhibited that the stable expression of PLA/AT-1 enhanced endogenous levels of NAPE, N-acylplasmenylethanolamine, NAE and glycerophospho-NAE. Furthermore, the knockdown of endogenous PLA/AT-1 in mouse ATDC5 cells lowered NAPE levels. Interestingly, the dysfunction of peroxisomes, which was caused by PLA/AT-2 and -3, was not observed in the PLA/AT-1-expressing HEK293 cells. Altogether, these results suggest that PLA/AT-1 is at least partly responsible for the generation of NAPE in mammalian cells.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Toru Uyama, Manami Inoue, Yoko Okamoto, Naoki Shinohara, Tatsuya Tai, Kazuhito Tsuboi, Tomohito Inoue, Akira Tokumura, Natsuo Ueda,