Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8303871 | Biochimica et Biophysica Acta (BBA) - Molecular Cell Research | 2013 | 9 Pages |
Abstract
Akt kinases are important mediators of the insulin signal, and some Akt substrates are directly involved in glucose homeostasis. Recently, Girdin has been described as an Akt substrate that is expressed ubiquitously in mammals. Cells overexpressing Girdin show an enhanced Akt activity. However, not much is known about Girdin's role in insulin signaling. We therefore analyzed the role of Girdin in primary human myotubes and found a correlation between Girdin expression and insulin sensitivity of the muscle biopsy donors, as measured by a hyperinsulinemic-euglycemic clamp. To understand this finding on a cellular level, we then investigated the function of Girdin in C2C12 mouse myoblasts. Girdin knock-down reduced Akt and insulin receptor substrate-1 phosphorylation. In contrast, stable overexpression of Girdin in C2C12 cells strikingly increased insulin sensitivity through a massive upregulation of the insulin receptor and enhanced tyrosine phosphorylation of insulin receptor substrate-1. Furthermore, Akt and c-Abl kinases were constitutively activated. To investigate medium-term insulin responses we measured glucose incorporation into glycogen. The Girdin overexpressing cells showed a high basal glycogen synthesis that peaked already at 1Â nM insulin. Taken together, we characterized Girdin as a new and major regulator of the insulin signal in myoblasts and skeletal muscle.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Angelika Hartung, Anna-Maria Ordelheide, Harald Staiger, Martina Melzer, Hans-Ulrich Häring, Reiner Lammers,