Article ID Journal Published Year Pages File Type
8309267 Cellular Signalling 2008 10 Pages PDF
Abstract
Several proteins act in concert to promote remodeling of the actin cytoskeleton during migration. This process is highly regulated by small GTP-binding proteins of the ADP-ribosylation factor (ARF) family of proteins. Here, we show that endothelin-1 (ET-1) can promote the activation of ARF6 and migration of endothelial cells through the activation of ETB receptors. Inhibition of ARF6 expression using RNA interference markedly impairs basal and ET-1 stimulated cell migration. In contrast, depletion of ARF1 has no significant effect. In order to delineate the underlying mechanism, we examined the signaling events activated in endothelial cells following ET-1 stimulation. Here, we show that this hormone promotes the phosphorylation of focal adhesion kinase (FAK), Erk1/2, and the association of FAK to Src, as well as of FAK to GIT1. These have been shown to be important for the formation and turnover of focal adhesions. In non-stimulated cells, depletion of ARF6 leads to increased FAK and Erk1/2 phosphorylation, similar to what is observed in ET-1 treated cells. In these conditions, FAK is found constitutively associated with the soluble tyrosine kinase, Src. In contrast, depletion of ARF6 impairs the ability of GIT1 to form an agonist promoted complex with FAK, thereby preventing disassembly of focal adhesions. As a consequence, ARF6 depleted endothelial cells are impaired in their ability to form capillary tubes. Taken together, our data suggest that ARF6 is central in regulating focal adhesion turnover in endothelial cells. Our study provides a molecular mechanism by which, this small GTPase regulates cell motility, and ultimately angiogenesis.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,