Article ID Journal Published Year Pages File Type
8310630 Clinica Chimica Acta 2015 5 Pages PDF
Abstract
A 26-year-old woman with a past history of fetal skeletal dysplasia was referred to our institution at 24 weeks of gestation following a routine sonographic diagnosis of short limbs in the fetus. A fetal ultrasound showed short limbs, a narrow thorax, short ribs with marginal spurs, and polydactyly. Conventional cytogenetics analysis of cultured amniocytes demonstrated that the fetal karyotype was normal. Using targeted exome sequencing of 226 known genes implicated in inherited skeletal dysplasia, we identified compound heterozygous mutations in the DYNC2H1 gene in the fetus with short rib-polydactyly syndrome, type III (SRPS III), c.1151 C > T(p.Ala384Val) and c.4351 C > T (p.Gln1451*), which were inherited from paternally and maternally, respectively. These variants were further confirmed using Sanger sequencing and have not been previously reported. To our knowledge, this is the first report of DYNC2H1 mutations causing SRPS III, in the Chinese population. Our findings expand the number of reported cases of this rare disease, and indicate that targeted next-generation sequencing (NGS) is an accurate, rapid, and cost-effective method in the genetic diagnosis of fetal skeletal dysplasia.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , ,