Article ID Journal Published Year Pages File Type
8319202 Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2014 9 Pages PDF
Abstract
Aquatic organisms possess cellular detoxification systems to deal with pollutants. To explore the influence of reactive oxygen species (ROS) generated in response to nitrite on oxidative stress defenses and the antioxidant system in Megalobrama amblycephala, the full length cDNA sequences were determined for three antioxidant-related genes, namely catalase (MaCAT), selenium-dependent glutathione peroxidase (MaGPx1) and Cu/Zn superoxide dismutase (MaCu/Zn-SOD). Encoded polypeptides that exhibited high identity and similarity with corresponding proteins in other fish species. Expression levels of these antioxidant genes were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) technique. MaCAT, MaGPx1 and MaCu/Zn-SOD expression was greatest in the liver and qRT-PCR was used to assess expression of these genes in juvenile fish during 72 h of exposure to 15 mg/L nitrite. Prolonged nitrite exposure resulted in the formation of excess ROS that caused oxidative damage to lipids and proteins and reduced the activities of antioxidant enzymes. Fish exposed to nitrite also showed liver damage. This study provides transcriptional data for MaCAT, MaGPx1 and MaCu/Zn-SOD that suggest expression is related positively with oxidative stress induced by nitrite exposure, indicating that imbalance between ROS and antioxidant defenses is one mechanism underlying nitrite toxicity in M. amblycephala.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,