| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 8320615 | DNA Repair | 2015 | 8 Pages |
Abstract
The DNA damage response to double-strand breaks (DSBs) is critical for cellular viability. Recent work has shown that a host of chromatin regulators are recruited to a DSB, and that they are important for the DNA damage response. However, the functional relationships between different chromatin regulators at DSBs remain unclear. Here we describe a conserved functional interaction among the chromatin remodeling enzyme, SWI/SNF, the NuA4 and Gcn5 histone acetyltransferases, and phosphorylation of histone H2A.X (γH2AX). Specifically, we find that the NuA4 and Gcn5 enzymes are both required for the robust recruitment of SWI/SNF to a DSB, which in turn promotes the phosphorylation of H2A.X.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Gwendolyn Bennett, Craig L. Peterson,
