Article ID Journal Published Year Pages File Type
8321930 The International Journal of Biochemistry & Cell Biology 2018 9 Pages PDF
Abstract
In this study, we showed that activation of nuclear factor-κB (NF-κB) is significantly higher in therapy-resistant EOC cells compared to chemosensitive counterparts, which was positively associated with resistance to cisplatin, carboplatin, paclitaxel and erlotinib. Bay 11-7082, a highly selective NF-κB inhibitor, reduced cell proliferation, clonogenicity and anoikis resistance in the therapy-resistant EOC cells and induced apoptotic cell death. Moreover, Bay 11-7082 decreased the expression of pro-survival, inflammatory and metastatic genes and synergistically increased anti-proliferative efficacy of cisplatin, carboplatin, paclitaxel and erlotinib. Altogether, these findings suggest that NF-κB is an attractive therapeutic target in EOC to be exploited in translational oncology and Bay 11-7082 is a potential anti-cancer drug to overcome chemoresistance and inhibit proliferation of the EOC cells.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , , , , , , ,