Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8321951 | The International Journal of Biochemistry & Cell Biology | 2018 | 25 Pages |
Abstract
A physical stimuli, it has been reported that cyclic tensile strain can promote bone marrow-derived mesenchymal stem cells (BMSCs) to differentiate into cardiomyocytes, but the underlying mechanisms have been poorly elucidated so far. Here, we used a mimicking loading strain, cyclic biaxial tensile strain (CBTS), and found it can promote BMSCs to differentiate into cardiomyocytes. When the CBTS were loaded, the cells expressed cardiac-specific markers GATA4, TNNT2, MEF-2c, and Cx43, meanwhile we found miR-27a decreased and stem cell factor (SCF) increased. When we overexpressed miR-27a, the cardiac-specific markers were down-regulated; we got the same results when SCF was knocked down by siRNA. Interestingly, we found SCF is a potential target of miR-27a by a bioinformatic analysis. So, we overexpressed miR-27a, and found SCF decreased both in mRNA and protein level. And, When miR-27a was co-transfected with SCF-3â²UTR, it significantly reduced the luciferase activity, but not when co-transfected with SCF-3â²UTR mutation plasmid. Furthermore, after transfected both miR-27a and SCF siRNA, and the protein expression of the markers were more down-regulated than that of single of them. Taken together, we found CBTS can promote BMSCs to differentiate into cardiomyocytes, and miR-27a functions as a mechano-sensitive miRNA in this process by targeting SCF.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Chengjian Cao, Liang Li, Huiming Li, Xueling He, Geng Wu, Xiaoqin Yu,