| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 8322230 | The International Journal of Biochemistry & Cell Biology | 2016 | 9 Pages |
Abstract
The study of the interaction between RNA and DNA sequences in activating genes has important significance for understanding the mechanisms of RNA-mediated activation. Here, we used in vitro chromatin reconstitution approach to observe whether RNAs increase DNase I digestion, plasmid transfection to observe whether RNAs promote gene expression, and bioinformatics analysis to predict the binding ability of RNAs to centromere DNA (constitutive heterochromatin). Synthetic RNAs (23Â nt) that were complementary to mouse albumin gene and total liver RNA increased DNase I digestion sensitivity of mouse albumin gene, suggesting that RNAs can increase chromatin accessibility. Transcribed sense-antisense tandem Alu elements activated an enhanced green fluorescent protein reporter gene after stable transfection. Bioinformatics analysis showed that the binding strength of RNA population to centromere DNAs is significantly lower than that of their flanking sequences, which suggests that the centromere is not easily affected by RNAs produced from other transcribed regions and may be the reason why centromeres consist of constitutive heterochromatin. The results in this paper illustrate that RNAs complementary to DNA sequences play roles in activating genes. Since RNA is mainly produced from the cell's own DNA, the work presented in this paper suggests that RNAs transcribed from DNA create feedback that activates DNA transcription.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Xiufang Wang, Zhihong Ma, Xianglong Kong, Zhanjun Lv,
