Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8322858 | The International Journal of Biochemistry & Cell Biology | 2015 | 9 Pages |
Abstract
Transplantation of bone-marrow derived mesenchymal stem cells (MSCs) has potential therapeutic effects on cardiac muscle repair. However, the underlying mechanism remains not completely clarified. Here we show that transplantation of MSCs significantly increased local recruitment of macrophages to facilitate cardiac muscle repair. MSCs-induced recovery of cardiac function and attenuation of fibrosis after injury were all abolished by either impaired macrophage infiltration, or by MSCs depletion after macrophage recruitment. However, angiogenesis seemed to be only affected by depletion of macrophages, but not by depletion of MSCs, suggesting that macrophages are responsible for the augmented angiogenesis after MSCs transplantation, while MSCs do not directly contribute to angiogenesis in the functional cardiac repair. Moreover, high level of transforming growth factor β 1 (TGFβ1) was detected in macrophages and high level of BMP7 was detected in MSCs, suggesting that MSCs not only may recruit macrophages to enhance angiogenesis to promote regeneration, but also may secrete BMP7 to contradict the fibrogenic effect of TGFβ1 by macrophages. Our study thus sheds new insight on the interaction of MSCs and macrophages in a functional cardiac repair triggered by MSCs transplantation.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Mei Wang, Guoru Zhang, Yaling Wang, Tao Liu, Yang Zhang, Yu An, Yongjun Li,