Article ID Journal Published Year Pages File Type
8322886 The International Journal of Biochemistry & Cell Biology 2014 6 Pages PDF
Abstract
Oligodendrocyte-derived neurite-outgrowth inhibitor Nogo-A and its restriction mechanism are well-known. Recently, Nogo-A is reported to be abundantly expressed in neurons, however, the concrete link between neuronal Nogo-A and neuronal development is poorly understood. In the present study, we used Neuro2A and COS7 cell lines to clarify that Nogo-A largely distributed in the centrosome and microtubules-rich regions. When endogenous Nogo-A was down-regulated with RNA interference, the percentage of cell differentiation and the total neurite length of Neuro2A exposed to valproic acid (VPA) decreased sharply. Furthermore, in primary neurons, acetylated α-tubulin decreased at the tips of neurites where endogenous Nogo-A was still highly expressed. In HEK293FT cell lines, Nogo-A overexpression could redistribute acetylated α-tubulin but not change the level of α-tubulin. Together, our data discovered that centrosome- and microtubules-localized Nogo-A positively regulates neuronal differentiation and neurite outgrowth of Neuro2A cell lines, implicating the essential roles of subcellular Nogo-A in neuronal development.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,