Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8323100 | The International Journal of Biochemistry & Cell Biology | 2014 | 7 Pages |
Abstract
T-helper 17 (Th17) cells, a recently identified CD4+ T subset with a unique characteristic to produce Interleukin-17 (IL-17), are critical for the development of autoimmune diseases such as multiple sclerosis, in which IL-23 plays an important role in the differentiation of Th17 cells through IL-23/IL-23-receptor/STAT3 pathway. Previously, soluble recombinant human IL-23 receptor cytokine-binding homology region (hIL23R-CHR) was constructed in our laboratory to neutralize IL-23 and inhibit murine Th17 development in vitro. Herein we present that hIL23R-CHR could inhibit both differentiation and function of human/murine Th17 cells. The present in vivo study further demonstrated that hIL23R-CHR inhibited murine Th17 cell development by down regulating IL-17 gene expression and protected mice against the development of experimental autoimmune encephalomyelitis (EAE) through suppression of CNS inflammation and pro-inflammatory cytokine production. In addition to the in vitro inhibition of human Th17 cells in a dose-dependent manner, the antagonizing effect of hIL23R-CHR was confirmed by reduced levels of IL-23 in both blood and brain of EAE mice and STAT3 phosphorylation in vivo. Taken together, our data demonstrated that hIL23R-CHR could be an effective and specific immunosuppressive molecule for the treatment of Th17-related autoimmune diseases.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Wei Guo, Cheng Luo, Chen Wang, Yu heng Wang, Xin Wang, Xiang dong Gao, Wen Bing Yao,