Article ID Journal Published Year Pages File Type
8323643 The International Journal of Biochemistry & Cell Biology 2014 8 Pages PDF
Abstract
Therapies to reverse the vascular endothelial aging process may play as a novel strategy for the treatment of cardiovascular diseases. 14,15-epoxyeicosatrienoic acid (14,15-EET) is a predominant cytochrome P450 epoxygenases-derived arachidonic acid metabolite and possesses multiple biological effects on the vascular system. The present study sought to investigate the roles of mammalian target of rapamycin complex 2 (mTORC2)/Akt signaling pathways in mediating the effect of 14,15-EET on endothelial senescence. By measuring the isometric tension in rat mesenteric arteries, we demonstrated that 14,15-EET improved the impaired endothelium-dependent vasodilatation in aged rats through activating mTORC2/Akt signaling pathway. Meanwhile, by promoting the formation of mTORC2 and the phosphorylation of Akt (Ser473), 14,15-EET inhibited the senescence of rat mesenteric arterial endothelial cells, which was not influenced by rapamycin but was significantly attenuated by Akt1/2 kinase inhibitor. The knockdown of Rictor gene by RNA interference abolished the inhibitory effect of 14,15-EET on endothelial senescence. Furthermore, 14,15-EET down-regulated the expression of p53 protein in aged endothelial cells. Meanwhile, the nuclear translocation of telomerase reverse transcriptase and the nuclear telomerase activity were also enhanced by treatment with 14,15-EET. Therefore, our present study suggests the crucial role of mTORC2/Akt signaling pathways in the inhibitory effects of 14,15-EET on the endothelial senescence. Our findings reveal important mechanistic clues to understanding of the effects of 14,15-EET on the endothelial functions.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , ,