Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8324671 | The International Journal of Biochemistry & Cell Biology | 2012 | 14 Pages |
Abstract
Osteoclasts, bone-specialized multinucleated cells, are responsible for bone destructive diseases such as osteoporosis, periodontitis, and rheumatoid arthritis. Natural plant-derived products have received substantial attention given their potential therapeutic and preventive activities against human diseases. In the present study, we investigated the effects of isoliquiritigenin (ISL), a natural flavonoid isolated from licorice, on receptor activator of nuclear factor-κB ligand (RANKL)-induced in vitro osteoclastogenesis and inflammation-mediated bone destruction in vivo. We observed that ISL dose-dependently inhibited RANKL-induced osteoclast formation from RAW 264.7 and primary mouse bone marrow-derived macrophages (BMMs), as well as decreased the extent of lacunar resorption. Specifically, ISL targeted RANKL-induced osteoclastogenesis and F-actin rings formation at an early stage. The RANKL-stimulated mRNA expression of osteoclast-related genes and transcription factors were also diminished by ISL. Mechanistically, ISL blocked the RANKL-triggered RANK-TRAF6 association, phosphorylation of mitogen-activated protein kinases (MAPKs), inhibitor of κBα (IκBα) phosphorylation and degradation, nuclear factor-κB (NF-κB) p65 nuclear translocation, as well as activator protein (AP)-1 activation. ISL almost abrogated the nuclear factor of activated T cells (NFATc1) expression and inhibited its nuclear translocation specifically in pre-osteoclasts. Furthermore, the ectopic introduction of NFATc1 into osteoclast precursors almost reversed the ISL-elicited anti-osteoclastogenic effects. Consistent with the in vitro results, administration of ISL prevented inflammatory bone loss in mice by attenuating osteoclast activity. Taken together, our results demonstrated that ISL suppresses RANKL-induced osteoclastogenesis and inflammatory bone loss via RANK-TRAF6, MAPK, IκBα/NF-κB, and AP-1 signaling pathways. Therefore, ISL may be considered as a novel therapeutic and/or preventive strategy against lytic bone diseases.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Lingxin Zhu, Hongxia Wei, Yan Wu, Shasha Yang, Lan Xiao, Jie Zhang, Bin Peng,