Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8324838 | The International Journal of Biochemistry & Cell Biology | 2012 | 11 Pages |
Abstract
The regulation and maintenance of the paracellular transport in renal tubular epithelia is vital for kidney functions. Combination of the immunosuppressant drugs cyclosporine A (CsA) and sirolimus (SRL) exerts powerful immunosuppression, but also causes nephrotoxicity. We have previously shown that CsA and SRL elevate transepithelial resistance (TER) in kidney tubular cells partly through MEK/ERK1/2. In this work we examined the hypothesis that the RhoA pathway may also be mediating effects of CsA and SRL. We show that CsA and the CsA/SRL combination activated RhoA, induced cofilin phosphorylation and promoted stress fiber generation. The Rho kinase (ROK) inhibitor, Y27632, prevented CsA and CsA/SRL-induced cofilin phosphorylation and actin remodelling, reduced the TER increase and prevented the rise in claudin-7 levels caused by the drugs. Expression of the exchange factor GEF-H1/lfc was elevated in cells treated with CsA and CsA/SRL. GEF-H1 silencing inhibited RhoA activation by â50%, and potently reduced cofilin phosphorylation and stress fiber formation induced by CsA and CsA/SRL. However, GEF-H1 downregulation did not prevent the TER change. Thus the Rho/Rho kinase pathway was involved in mediating CsA and CsA/SRL-induced cytoskeleton rearrangement and TER changes via claudin-7 expression. Our data however point to differential regulation of Rho activation involved in central cytoskeleton remodelling, that is GEF-H1-dependent and junctional permeability that does not require GEF-H1.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Natalia Martin-Martin, Qinghong Dan, Yasaman Amoozadeh, Faiza Waheed, Tara McMorrow, Michael P. Ryan, Katalin Szászi,