Article ID Journal Published Year Pages File Type
8326933 International Journal of Biological Macromolecules 2018 33 Pages PDF
Abstract
The southern house vector, Culex quinquefasciatus is the paramount cause of Japanese encephalitis, West Nile fever and Lymphatic Filariasis, which is globally affecting the worldwide population. Many attempts were made by researchers with different perceptions to discover regimen against these aforementioned ailments but the output was not that effectual. Consequently, there is an imminent need to develop very effective and potential treatment against these perilous diseases. Employing immunoinformatic approaches, we have designed the multi-epitope subunit vaccine by exploring salivary proteins of Culex quinquefasciatus, which possess both antigenic and potent immunogenic behaviour. The immunogenic epitopes from the immune cells (B-cell, CTL, and HTL) were predicted and linked together with the help of linkers. Apart from this, at the N-terminal of the construct, an adjuvant was added in order to enhance the immunogenicity of the vaccine. The physiological parameters, antigenicity and allergenicity were also evaluated for the designed vaccine construct. Molecular docking between ligand (vaccine construct) and TLR-4 receptor was performed. Molecular dynamics simulation of the docked complex was performed to identify the stability, patterns, macromolecules interactions and their behaviour. Finally, to ensure the translation and gene expression efficiency of designed construct, insilico restriction cloning was executed into suitable expression vector pET28a.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,