Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8327453 | International Journal of Biological Macromolecules | 2018 | 42 Pages |
Abstract
Insulin is able to form amyloid-like fibrils, a misfolding process by which insulin molecules interact with each other to form aggregates and pathological amyloid deposition. Inhibition of amyloid aggregation using natural products is proposed as a new strategy to prohibit the development of amyloid diseases. Herein, we demonstrated the inhibitory effect of cyanidin-3-rutinoside (C3R), a natural anthocyanin with multiple biological activities, against insulin amyloid fibrillation. The results showed that increased insulin concentration resulted in faster growth and higher amounts of insulin fibrils. C3R (10.6-170 μM) concentration dependently decreased insulin fibril growth and increased the duration of lag time of insulin fibril formation. Moreover, C3R directly decreased the secondary structure transition from α-helix to β-sheet structure. C3R (0.31-5 μM) attenuated insulin fibrils-induced oxidative hemolysis of human erythrocytes in a concentration-dependent manner. Moreover, C3R reduced insulin fibrils-induced erythrocyte membrane disruption through the inhibition of reactive oxygen species (ROS) generation. The findings also suggest that C3R reduced fibrils-induced membrane lipid peroxidation by maintaining the catalase activity and oxidized/reduced glutathione content (GSH/GSSH) in erythrocytes. These findings suggest that C3R may serve as a potential inhibitory agent against amyloid fibril formation and insulin fibrils-induced oxidative hemolysis.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Thanyaporn Saithong, Thavaree Thilavech, Sirichai Adisakwattana,