Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8328967 | International Journal of Biological Macromolecules | 2018 | 41 Pages |
Abstract
In this study, negatively charged carboxylic curdlan (Cc) bearing a β-1,3-polyglucuronic acid structure was employed to fabricate nanosized polyelectrolyte complexes (PECs) with positively charged chitosan (CS) in aqueous solution as potential carriers for 5-fluorouracil (5Fu) delivery. Nanosized CS/Cc PECs were formed by the addition of 0.5 mg/mL solutions of CS and Cc with a mixing ratio of 1:1 (w/w) at pH 3.0. Under optimized conditions, the prepared CS/Cc PECs showed spherical morphology with an average size of about 180 nm and a zeta potential of around 41 mV. The 5Fu drug was incorporated into the nanosized CS/Cc PECs and showed excellent encapsulation efficiency (86.47%) and loading content (10.81%). The drug release data in vitro indicated that the nanosized CS/Cc PECs are promising carriers for the sustained release of 5Fu with an anomalous transport mechanism following the Ritger-Peppas model. Besides, the CS/Cc PECs exhibited low cytotoxic activity against SPCA-1 and HeLa cell lines in vitro. This finding suggested that the development of the nanosized CS/Cc PECs offered great promise as an antitumor drug platform.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Jing-Kun Yan, Wen-Yi Qiu, Yao-Yao Wang, Li-Xia Wu, Peter C.K. Cheung,