Article ID Journal Published Year Pages File Type
8329111 International Journal of Biological Macromolecules 2017 34 Pages PDF
Abstract
In this study, a novel, effective and environment-friendly methods was used to prepare poly-l-lysine (PLL)-functionalized magnetic Fe3O4-(GO-MWCNTs) hybrid composite with large surface area and abundant hydroxyl and amino groups. The as-prepared PLL-Fe3O4-(GO-MWCNTs) nanocomposite was systematically characterized by FT-IR, XRD, TGA, SEM, TEM, VSM and EDX. The PLL-Fe3O4-(GO-MWCNTs) hybrid composite exhibited excellent adsorption performance for the removal of a dye (tartrazine) and a heave metal (Pb(II)). The result showed that adsorption of Pb(II) reached equilibrium in 30 min and adsorption of tartrazine reached equilibrium in approximately 60 min. Most importantly, PLL-Fe3O4-(GO-MWCNTs) hybrid possesses high adsorption capacity, rapid separation, and less time-consuming. The equilibrium adsorption capacity was 1038.42 mg g−1 for Pb(II) and 775.19 mg g−1 for tartrazine under the optimal conditions. These two pollutants removal were found to obey Langmuir adsorption model, while the kinetics of adsorption followed pseudo-second-order kinetic model. A possible adsorption mechanism has been proposed where the chelation between PLL and Pb(II) or electrostatic interaction between GO and tartrazine. These results demonstrated the potential applications of PLL-Fe3O4-(GO-MWCNTs) hybrid composite in deep-purification of polluted water.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,