Article ID Journal Published Year Pages File Type
8329251 International Journal of Biological Macromolecules 2018 9 Pages PDF
Abstract
This study reports the fabrication of highly conducting and biocompatible bacterial cellulose (BC)-gold nanoparticles (AuNPs)-poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) (BC-AuNPs-PEDOT:PSS) composites for biology-device interface applications. The composites were fabricated using ex situ incorporation of AuNPs and PEDOT:PSS into the BC matrix. Structural characterization, using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and x-ray diffraction (XRD) analysis, confirmed the uniform nature of the synthesized BC-AuNPs and BC-AuNPs-PEDOT:PSS composites. Four-point probe analysis indicated that the BC-AuNPs and BC-AuNPs-PEDOT:PSS films had high electrical conductivity. The composites were also tested for biocompatibility with animal osteoblasts (MC3T3-E1). The composite films supported adhesion, growth, and proliferation of MC3T3-E1 cells, indicating that they are biocompatible and non-cytotoxic. AuNPs and PEDOT:PSS, imparted a voltage response, while BC imparted biocompatibility and bio‐adhesion to the nanocomposites. Therefore, our BC-AuNPs-PEDOT:PSS composites are candidate materials for biology-device interfaces to produce implantable devices in regenerative medicine.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,