Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8330649 | International Journal of Biological Macromolecules | 2015 | 9 Pages |
Abstract
In this research study, a new magnetic biosorbent was developed by the fabrication of magnetic Fe3O4 particles on nano-hydroxyapatite(n-HAp)/alginate (Alg) composite (Fe3O4@n-HApAlg composite) for defluoridation in batch mode. The synthesized Fe3O4@n-HApAlg biocomposite possess an enhanced defluoridation capacity (DC) of 4050Â mgFâ/kg when compare to n-HApAlg composite, Fe3O4@n-HAp composite, n-HAp and Fe3O4 which possesses the DCs of 3870, 2469, 1296 and 1050Â mgFâ/kg respectively. The structural changes of the sorbent, before and after fluoride sorption were studied using FTIR, XRD and SEM with EDAX techniques. There are various physico-chemical parameters such as contact time, pH, co-existing anions, initial fluoride concentration and temperature were optimized for maximum fluoride removal. The equilibrium data was well modeled by Freundlich, Langmuir, Dubinin-Radushkevich (D-R) and Temkin isotherms. The present system follows Dubinin-Radushkevich isotherm model. The thermodynamic parameters reveals that the feasibility, spontaneity and endothermic nature of fluoride sorption. The performance and efficiency of the adsorbent material was examined with water samples collected from fluoride endemic areas namely Reddiyarchatram and Ammapatti in Dindigul District of Tamil Nadu using standard protocols.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Kalimuthu Pandi, Natrayasamy Viswanathan,