Article ID Journal Published Year Pages File Type
8330916 International Journal of Biological Macromolecules 2015 9 Pages PDF
Abstract
Lyophilized wafers comprising sodium alginate (SA) and gelatin (GE) (0/100, 75/25, 50/50, 25/75, 0/100 SA/GE, respectively) with silver sulfadiazine (SSD, 0.1% w/w) have been developed for potential application on infected chronic wounds. Polymer-drug interactions and physical form were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), respectively, while morphological structure was examined using scanning electron microscopy (SEM). Functional characteristics [(mechanical hardness and adhesion using texture analyzer, and swelling capacity)] of blank wafers were determined in order to select the optimal formulations for drug loading. Finally, the in vitro drug dissolution properties of two selected drug loaded wafers were investigated. There was an increase in hardness and a decrease in mucoadhesion with increasing GE content. FTIR showed hydrogen bonding and electrostatic interaction between carboxyl of SA and amide of GE but no interaction between the polymers and drug was observed, with XRD showing that SSD remained crystalline during gel formulation and freeze-drying. The results suggest that 75/25 SA/GE formulations are the ideal formulations due to their uniformity and optimal mucoadhesivity and hydration. The drug loaded wafers showed controlled release of SSD over a 7 h period which is expected to reduce bacterial load within infected wounds.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,