Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8331891 | International Journal of Biological Macromolecules | 2015 | 33 Pages |
Abstract
Bio-derived low molecular weight poly(γ-glutamic acid) (γ-PGA) was suggested as a novel adjuvant material for use in cancer vaccines. When the infection-mimicking γ-PGA was immunized with ovalbumin (OVA) as a model antigen, increase in the dendritic cell (DC)-mediated functions such as activation, maturation, antigen uptake, migration to lymph nodes, and priming of lymphocytes, which included cross-presentation, was observed. These DC-mediated functions were found to be facilitated by γ-PGA in a dose-dependent manner, with stimulation of toll-like receptor 4 (TLR4) being one of the underlying mechanisms. The in vivo efficacy of γ-PGA was tested in a mouse tumor model where both arms of adaptive immunity (humoral and cell-mediated) were found to be significantly enhanced in the presence of γ-PGA, indicating efficient priming of B and T cells. Moreover, immunization of mice with γ-PGA followed by EG7-OVA tumor challenge led to dramatic inhibition of tumor growth. After 71 days, the cured mice were rechallenged with tumor cells at a distant site in order to test the memory effect. No tumor growth was observed, which indicates the presence of a systemic, long-lasting immune response. Based on these results, low molecular weight γ-PGA is expected to have tremendous potential for applications in cancer immunotherapy.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Anushree Seth, Min Beom Heo, Moon Hee Sung, Yong Taik Lim,