Article ID Journal Published Year Pages File Type
8332018 International Journal of Biological Macromolecules 2015 9 Pages PDF
Abstract
This study investigates the synthesis of nano-hydroxyapatite (n-HAp) incorporated gelatin (Gel) biocomposite namely n-HAp@Gel composite for efficient removal of fluoride from aqueous solution. The results demonstrated that, the developed n-HAp@Gel biocomposite possess an enhanced defluoridation capacity (DC) of 4157 mgF−/kg. The batch experiments were optimized as a function of various influencing parameters like contact time, pH, co-ions, temperature and initial fluoride concentration. The physicochemical characteristics of n-HAp@Gel composite was examined by using different instrumental techniques like FTIR, XRD, TGA-DSC and SEM with EDAX analysis. The sorption data were fitted with various isotherm models. The acquired thermodynamic parameters showed that the sorption of fluoride onto the sorbent was endothermic and spontaneous in nature. The reaction-based and diffusion-based models were used to identify the kinetics of the reaction. At field conditions, n-HAp@Gel composite reduce the fluoride concentration below the tolerance limit. A regeneration technique was proposed in order to reuse the sorbent.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,