Article ID Journal Published Year Pages File Type
8332280 International Journal of Biological Macromolecules 2015 33 Pages PDF
Abstract
Superfine grinding technology was applied for polysaccharide extraction from the fruiting bodies of Ganoderma lucidum, and response surface methodology (RSM) was used to optimize the effects of processing parameters on polysaccharide extraction yield. Results showed that the maximum yield of G. lucidum polysaccharides (GLP) was obtained at an optimum condition: extraction time 137 min, extraction temperature 66 ̊C, the ratio of water to material 35 mL/g, and the GLP extracting yield reached 2.44% under this condition. GLP were precipitated into three crude polysaccharides, viz. GLP40, GLP60 and GLP80. The basic characterization of polysaccharides was determined by using HPLC and FT-IR methods. GLP, GLP80, GLP60, and GLP40 were composed of Man, Rib, Glc, Gal and Fuc with the molar ratios of 1.27:0.36:22.89:1.61:0.33, 1.40:0.31:23.02:3.46:0.91, 0.96:0.34:25.76:2.47:0.46, and 2.81:1.42:23.83:1.61:0.33, respectively. The result of FT-IR suggested that the monosaccharide residue of the four polysaccharides was β-pyranoid ring. Moreover, the antioxidant activities of these four polysaccharides were evaluated. The results showed that GLP80 had the best reducing power, DPPH radical scavenging ability and oxygen radical scavenging ability followed by GLP, GLP60 and GLP40. Our results demonstrated that RSM might be a valuable technique for optimizing the efficient extraction of GLP, and G. lucidum could be considered as sources of natural antioxidants and preservatives of food industry. Moreover, polysaccharides, especially GLP80, extracted from the fruiting bodies of G. lucidum, exhibited promising antioxidant activities.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,