Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8332288 | International Journal of Biological Macromolecules | 2015 | 8 Pages |
Abstract
Three simple mutants, S80T, S146T, and S149T, and a double mutant, S80T-S149T, were constructed and expressed in Escherichia coli to replace Serine on the surface of the Trichoderma reesei xylanase protein with Threonine residues. While the Wild-type (WT) xylanase showed a half-life time (t1/2) of 20 min at 55 °C, the double mutant was more thermostable exhibiting a t1/2 value of 37 min, followed by the S80T and S149T mutants whose t1/2 values were 25 and 23 min, respectively. At 55 °C, the S146T mutant showed a decrease in thermostability with a t1/2 value of 3 min. While the WT enzyme retained only 32% of residual activity after incubation for 5 min at 60 °C, the S80T, S149T, and the S80T-S149T mutant enzymes retained 45%, 41%, and 60%, respectively. Molecular modeling attributed the increase in the thermostability of the S80T and S149T mutants to a new hydrogen bond formation and a packing effect, respectively.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Dorra Zouari Ayadi, Aida Hmida Sayari, Hajer Ben Hlima, Sameh Ben Mabrouk, Monia Mezghani, Samir Bejar,