Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8332866 | International Journal of Biological Macromolecules | 2014 | 8 Pages |
Abstract
The nanosized ferrite (Fe3O4) was synthesized and characterized by analytical techniques such as Fourier transform infrared (FTIR) spectroscopy, UV-visible spectroscopy, fluorescence spectroscopy and transmission electron microscopy (TEM). The structure-property relationship of starch was studied under three different pHs namely 3.8, 7.1 and 12.5. The starch treated under acidic condition was degraded. In a similar manner, the structure-property relationship of starch in the presence of ferrite nanoparticles at three different pHs, as mentioned above was studied. The starch/ferrite nanocomposite prepared under acidic condition showed a degraded structure. Further, the polymer/nanocomposite systems were characterized by analytical techniques such as FTIR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), vibrating sample measurement (VSM), TEM and scanning electron microscopy (SEM). Finally, the settling velocity of starch under three different pHs both in the presence and absence of Fe3O4 was carried out to ensure the role of pH and effect of Fe3O4 on the settling velocity of starch.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
S. Palanikumar, P. Siva, B. Meenarathi, L. Kannammal, R. Anbarasan,