Article ID Journal Published Year Pages File Type
8335149 International Journal of Biological Macromolecules 2012 9 Pages PDF
Abstract
A novel oligomeric hydrolase (LI22) from Listeria innocua CLIP 11262 was identified, characterized, and immobilized for industrial application. Sequence analysis of LI22 revealed a putative catalytic triad (Ser10-Asp176-His179), and a conserved sequence motif Ser(S)10-Gly(G)77-Asn(N)79-His(H)179 with moderate identities (<30%) with other members of the SGNH-hydrolase superfamily. LI22 was able to hydrolyze p-nitrophenyl acetate, α- and β-naphthyl acetate, while the S10A mutant completely lost its activity. Structural properties of LI22 were investigated using gel filtration, circular dichroism (CD), fluorescence, molecular modeling, and gel filtration. We have shown that upon incubation in 30% TFE or 50% ethanol solution, LI22 was transformed into curly amyloid fibrils. Cross-linked enzyme aggregates of LI22 were prepared by precipitating the enzyme with ammonium sulfate and subsequent cross-linking with glutaraldehyde. Higher thermal and chemical stability, as well as good durability after repeated use of the LI22-CLEA, highlight its potential applicability as a biocatalyst in the pharmaceutical and chemical industries.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,