Article ID Journal Published Year Pages File Type
8335704 International Journal of Biological Macromolecules 2011 6 Pages PDF
Abstract
Insulin conjugates in which the B1Phe residue has been chemically modified often exhibit a reduced tendency to associate into hexamers due to weakened interactions between subunits. The purpose of this study was to prepare a hexamer formulation for such insulin conjugates by using Co(III) as a coordinating metal ion. PEGylated insulin in which monomethoxypoly(ethylene glycol) (mPEG, Mr 5000 or 20,000) had been site-specifically attached to B1Phe was chosen as a model conjugate. Hexamerization of mPEG-insulin upon H2O2-mediated oxidation of Co(II) was kinetically and quantitatively analysed by visible spectrometry and size-exclusion HPLC. Co(III) mPEG-insulin hexamers thus obtained were extremely stable, existing mostly as a hexameric form even at nanomolar concentrations. A remarkable increase in hydrodynamic volumes was observed for Co(III) mPEG(20k)-insulin hexamers (1600 kDa), as well as Co(III) mPEG(5k)-insulin hexamers (300 kDa). Our results demonstrate the potential benefits of Co(III) hexamer formulation for weakly associating insulin conjugates in the treatment of diabetes.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,