Article ID Journal Published Year Pages File Type
8337098 The Journal of Nutritional Biochemistry 2014 36 Pages PDF
Abstract
Obesity has become a worldwide epidemic. The cafeteria diet (CD) induces obesity and oxidative-stress-associated insulin resistance. Polyunsaturated fatty acids and polyphenols are dietary compounds that are intensively studied as products that can reduce the health complications related to obesity. We evaluate the effects of 21 days of supplementation with grape seed proanthocyanidins extract (GSPE), docosahexaenoic-rich oil (DHA-OR) or both compounds (GSPE+DHA-OR) on skeletal muscle metabolism in diet-obese rats. The supplementation with different treatments did not reduce body weight, although all groups used more fat as fuel, particularly when both products were coadministered; muscle β-oxidation was activated, the mitochondrial functionality and oxidative capacity were higher, and fatty acid uptake gene expressions were up-regulated. In addition to these outcomes shared by all treatments, GSPE reduced insulin resistance and improved muscle status. Both treatments increased 5'-AMP-activated protein kinase (AMPK) phosphorylation, which was consistent with higher plasma adiponectin levels. Moreover, AMPK activation by DHA-OR was also correlated with an up-regulation of peroxisome proliferator-activated receptor alpha (Pparα). GSPE+DHA-OR, in addition to activating AMPK and enhancing fatty acid oxidation, increased the muscle gene expression of uncoupling protein 2 (Ucp2). In conclusion, GSPE+DHA-OR induced modifications that improved muscle status and could counterbalance the deleterious effects of obesity, and such modifications are mediated, at least in part, through the AMPK signaling pathway.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , ,