Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8337661 | The Journal of Nutritional Biochemistry | 2012 | 12 Pages |
Abstract
Obesity is a major risk factor for the development of type 2 diabetes, and both conditions are now recognized to possess significant inflammatory components underlying their pathophysiologies. Here, we hypothesized that cyanidin 3-glucoside (C3G), a typical anthocyanin reported to possess potent anti-inflammatory properties, would ameliorate obesity-associated inflammation and metabolic disorders, such as insulin resistance and hepatic steatosis in mouse models of diabesity. Male C57BL/6J obese mice fed a high-fat diet for 12 weeks and genetically diabetic db/db mice at an age of 6 weeks received dietary C3G supplementation (0.2%) for 5 weeks. We found that dietary C3G lowered fasting glucose levels and markedly improved the insulin sensitivity in both high-fat diet fed and db/db mice as compared with unsupplemented controls. White adipose tissue messenger RNA levels and serum concentrations of inflammatory cytokines (tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1) were reduced by C3G, as did macrophage infiltration in adipose tissue. Concomitantly, hepatic triglyceride content and steatosis were alleviated by C3G. Moreover, C3G treatment decreased c-Jun N-terminal kinase activation and promoted phosphorylation and nuclear exclusion of forkhead box O1 after refeeding. These findings clearly indicate that C3G has significant potency in antidiabetic effects by modulating the c-Jun N-terminal kinase/forkhead box O1 signaling pathway and the related inflammatory adipocytokines.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Honghui Guo, Min Xia, Tangbin Zou, Wenhua Ling, Ruimin Zhong, Weiguo Zhang,