Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8337821 | The Journal of Steroid Biochemistry and Molecular Biology | 2018 | 6 Pages |
Abstract
In the spermatogenic cell line GC-2, dehydroepiandrosterone sulfate (DHEAS), activates the Src/Ras/c-Raf/Erk1/2/CREB(ATF-1) signaling cascade. Since DHEAS is present in the gonads, and since spermatogenesis and maturation of spermatogonia to haploid spermatozoa requires activation of Erk1/2, the triggering of these signaling events by DHEAS might have physiological relevance. In the Sertoli cell line TM4, DHEAS-induces activation of Erk1/2, CREB, and ATF-1, stimulates expression of claudin-3 and claudin-5 and augments transepithelial resistance, indicating the formation of tight junctions between adjacent Sertoli cells. Thus, by influencing the formation and dynamics of tight junctions at the blood-testis barrier, which protects germ cells from cells of the immune system, DHEAS might play a crucial role in the regulation and maintenance of male fertility. In bEnd.3 brain-derived endothelial cells, DHEAS stimulates the expression of zonula occludens-1 and claudin-3 and promotes tight junction formation between neighboring cells, which at the blood-brain barrier protects the brain from harmful factors and cells. If DHEAS supports the integrity of the blood-brain barrier also in vivo, the current findings might lead to new strategies for the prevention or treatment of neurological disorders associated with barrier defects.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Dimitrios Papadopoulos, Mazen Shihan, Georgios Scheiner-Bobis,