Article ID Journal Published Year Pages File Type
8340137 Methods 2018 29 Pages PDF
Abstract
Recent investigations have demonstrated that defined sets of exogenous factors (chemical and/or biochemical) can convert human and mouse somatic cells into induced neural stem cells (iNSCs). Considering the self-renewal and multi-potential differentiation capabilities of iNSCs, generation of these cells has considerably enhanced cell therapy for treatment of neurodegenerative disorders. These cells can also serve as models for investigation of the mechanism(s) underlying neurodegenerative diseases and as an asset in drug discovery. Meanwhile, using the process of direct conversion/transdifferentiation, by bypassing pluripotent state and consequently reducing tumorigenesis and genetic instability risks, establishment of several desired cells are feasible. In this review, we describe the pros and cons of different methods employed to directly reprogram somatic cells to iNSCs along with the progress of iNSCs applications and the future challenges.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,