Article ID Journal Published Year Pages File Type
8340139 Methods 2018 10 Pages PDF
Abstract
Neural progenitor cells hold significant promise in a variety of clinical settings. While both the brain and spinal cord harbor endogenous neural progenitor or stem cells, they typically are not capable of repopulating neural populations in case of injury or degenerative disease. In vitro systems for the culture of neural progenitors has come a long ways due to advances in the method development. Recently, many groups have shown that manipulation of the oxygen-sensing pathway leading to activation of hypoxia inducible factors (HIFs) that can influence the proliferation, differentiation or maturation of neural progenitors. Moreover, different oxygen concentrations appear to affect lineage specification of neural progenitors upon their differentiation in vitro. Here we summarize some of these studies in an attempt to direct effort towards implementation of best methods to advance the use of neural progenitors from basic development towards clinical application.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,