Article ID Journal Published Year Pages File Type
8340517 Methods 2015 36 Pages PDF
Abstract
With the recent development of single-molecule localization-based superresolution microscopy, the imaging of cellular structures at a resolution below the diffraction-limit of light has become a widespread technique. While single fluorescent molecules can be resolved in the nanometer range, the delivery of these molecules to the authentic structure in the cell via traditional antibody-mediated techniques can add substantial error due to the size of the antibodies. Accurate and quantitative labeling of cellular molecules has thus become one of the bottlenecks in the race for highest resolution of target structures. Here we illustrate in detail how to use small, high affinity nanobody binders against GFP and RFP family proteins for highly generic labeling of fusion constructs with bright organic dyes. We provide detailed protocols and examples for their application in superresolution imaging and single particle tracking and demonstrate advantages over conventional labeling approaches.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,