Article ID Journal Published Year Pages File Type
8340940 Microvascular Research 2018 27 Pages PDF
Abstract
The amiloride-sensitive epithelial sodium channel (ENaC) has been characterized in a variety of non-epithelial tissues. In the current study we sought to understand the effect of angiotensin II on δ ENaC function using human umbilical vein endothelial cells (HUVECs). The δ ENaC subunit is found in humans, but notably absent in rat and most mouse epithelial tissues. In this study we report the presence of δ ENaC in HUVECS with a half-life of ~ 80 min and a change in δ ENaC abundance when HUVECs were treated with angiotensin II. We also observed that angiotensin II increased apical membrane expression of δ ENaC and decreased protein ubiquitination. Equivalent short circuit current measurements showed angiotensin II increased δ ENaC ion transport in HUVEC cells. Treatment with the antioxidant apocynin attenuated angiotensin II mediated effects indicating an important role for angiotensin-derived H2O2 in δ ENaC subunit regulation. Whole cell recordings from oocytes injected with δβγ ENaC shows H2O2-sensitive current. These results suggest that δ ENaC subunits can make up functional channel in HUVEC cells that are regulated by angiotensin II in a redox-sensitive manner. The novel findings have significant implications for our understanding of the role of ENaC in vascular conditions in which oxidative stress occurs.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,