Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8344540 | Nitric Oxide | 2018 | 7 Pages |
Abstract
Nitric oxide-sensitive guanylyl cyclase (NO-GC) has been shown to regulate a plethora of different functions in the body. These include, among many others, the fine-tuning of vascular tone, platelet reactivity and gastrointestinal motility. Evidence for the participation of NO-GC in these functions has been obtained from various species including humans, rodents, as well as insects. Clearly, individual cell types that express NO-GC contribute differentially to organ-specific NO/cGMP signaling in the body. Hence, identification of NO-GC-expressing cells and their individual involvement in NO/cGMP signaling constituted the focus of many studies over the last 40 years. Probably most information has been obtained from vascular smooth muscle cells and platelets, in which NO-GC is known to induce relaxation and inhibition of aggregation, respectively. Many other cell types that express the enzyme have been linked to certain functions, e.g. cardiomyocyte/inotropy or gastrointestinal smooth muscle cells/motility. However, in some cell types, e.g. myofibroblasts or pericytes, NO-GC expression is evident but individual functions of NO/cGMP signaling have yet to be assigned, whereas in other cell types, e.g. in erythrocytes, expression and role of NO-GC is still a matter of debate. This review discusses the current knowledge on 'less popular' cell types that express NO-GC (pericytes, myofibroblasts, cardiomyocytes, adipocytes, interstitial cells of Cajal, fibroblast-like cells and blood cells) and outlines possible further functions in cell types that have not gained strong attention so far.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Andreas Friebe, Barbara VouÃen, Dieter Groneberg,